翻訳と辞書
Words near each other
・ Malli (TV series)
・ Malli Amman Durgham
・ Malli Maduve
・ Malli Malli Chudali
・ Malli Malli Idi Rani Roju
・ Malli Mastan Babu
・ Malli Seti
・ Malli-dong
・ Mallia Franklin
・ Malliabad
・ Mallial
・ Mallian Campaign
・ Mallian Kalan
・ Malliary
・ Malliavin calculus
Malliavin derivative
・ Malliavin's absolute continuity lemma
・ Mallica Reynolds
・ Mallica Vajrathon
・ Malliciah Goodman
・ Mallie Hughes
・ Mallie's Sports Grill & Bar
・ Mallie, Kentucky
・ Mallig Plains
・ Mallig, Isabela
・ Malligasta
・ Malligwad
・ Mallik
・ Mallik gas hydrate site
・ Mallik Island


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Malliavin derivative : ウィキペディア英語版
Malliavin derivative

In mathematics, the Malliavin derivative is a notion of derivative in the Malliavin calculus. Intuitively, it is the notion of derivative appropriate to paths in classical Wiener space, which are "usually" not differentiable in the usual sense.
==Definition==
Let H be the Cameron–Martin space, and C_ denote classical Wiener space:
:H := \^) \;|\; f(0) = 0 \} := \ \};
:C_ := C_ ((T ); \mathbb^) := \;
By the Sobolev embedding theorem, H \subset C_0. Let
:i : H \to C_
denote the inclusion map.
Suppose that F : C_ \to \mathbb is Fréchet differentiable. Then the Fréchet derivative is a map
:\mathrm F : C_ \to \mathrm (C_; \mathbb);
i.e., for paths \sigma \in C_, \mathrm F (\sigma)\; is an element of C_^, the dual space to C_\;. Denote by \mathrm_ F(\sigma)\; the continuous linear map H \to \mathbb defined by
:\mathrm_ F (\sigma) := \mathrm F (\sigma) \circ i : H \to \mathbb,
sometimes known as the ''H''-derivative. Now define \nabla_ F : C_ \to H to be the adjoint of \mathrm_ F\; in the sense that
:\int_0^T \left(\partial_t \nabla_H F(\sigma)\right) \cdot \partial_t h := \langle \nabla_ F (\sigma), h \rangle_ = \left( \mathrm_ F \right) (\sigma) (h) = \lim_ \frac.
Then the Malliavin derivative \mathrm_ is defined by
:\left( \mathrm_ F \right) (\sigma) := \frac \left( \left( \nabla_ F \right) (\sigma) \right).
The domain of \mathrm_ is the set \mathbf of all Fréchet differentiable real-valued functions on C_\;; the codomain is L^ ((T ); \mathbb^).
The Skorokhod integral \delta\; is defined to be the adjoint of the Malliavin derivative:
:\delta := \left( \mathrm_ \right)^ : \operatorname \left( \mathrm_ \right) \subseteq L^ ((T ); \mathbb^) \to \mathbf^ = \mathrm (\mathbf; \mathbb).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Malliavin derivative」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.